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EXECUTLVE SUMMARY

Space-based, synthetic aperture radars (SAR) are being considered
for a variety of strategic and tactical military missions. SARs in space
can achieve resolutions comparable to practical optical instruments, and
they are unaffected by clouds, weather, and darkness. The major obstacle
to their use is the extensive data reduction required, although this
problem is common to any advanced surveillance system and rapid progress

in overcoming it is being made.

The azimuthal resolution of a SAR with a fixed antenna is limited
by the beamwidth. Practical space-based systems can synthesize apertures
approaching ~ 20 km. At L-band, the corresponding angular resolution
is a few hundreths of milliradians; however, naturally occurring iono-
spheric disturbances can cause comparable amounts of angular jitter.
Viewed another way, the spatial coherence scale of an L-band wave passing

through a disturbed ionosphere can be reduced below 20 km.

To investigate the potential impact of the disturbances on SAR
imagery, we have applied a general space-based radar model developed in
the first phase of this contract. The resolution characteristics of a
SAR are determined by the range-azimuth ambiguity functicn. By simulating
ionospheric disturbances, we showed that moderate, naturally occurring
disturbances degrade the azimuthal resolution primarily by raising the

sidelobe level.

To look for evidence of the potential effects of such disturbances,
we reviewed SAR data from the SEASAT-A satellite. One pass, which was
coincident with incoherent-scatter radar operations that measured a
highly structured F-region, showed an image region with a conspicuous
contrast reduction. Other evidence of such effects during disturbed

conditions also have been reported.




We believe these results to be the first demonstrated evidence

of propagation-induced SAR image degradation. The results are consistent
with predictions based on the SATCOM channel model that has been used
extensively for analyzing communication and navagation systems. The
inputs, however, draw heavily on our structure phenomenology program

for the natural ionosphere.

More detailed simulations are planned to identify the characteristics
of severe disturbances. This final report completes the development of

the theoretical model.
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I

{NTRODUCTION

Space-based radar (SBR) systems have been proposed for future CONUS

defense, surveillance, and tactical battle-support functions. These systems,

however, may have to operate in naturally or nuclear-disturbed propagation

environments.

disturbances on space-based synthetic aperture radars (SARs), which are

becoming increasingly more important for strategic and tactical support

missions.

) ) 1‘«»‘ .
In Topical Report 1, we developed a gencral mathematical formalism
for using the satellite communications model to simulate SBR propagation
effects and/or to calculate measures of average performance degradation.

The functional elements of a monostatic radar system are diagramed in

This final report describes the effects of propagation

Figure 1, which is taken from Topical Report 1.
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FIGURE 1

FUNCTIONAL DIAGRAM OF A MONOSTATIC RADAR SYSTEM

"References are listed at the end of the report.
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The SATCOM model characterizes the propagation effects on a single
path in terms of a time-varying impulse response or the equivalent trans-
fer function. To accommodate a two-way path fully, the SATCOM channel
model effectively must be evaluated twice, although the differences between
the paths can be accommodated by scaling the independent variable appro-

priately.

The computation of average performance measures for a two-way path
can be very complicated. However, in Topical Report 1 we showed that,
under the severely disturbed conditions of primary concern, the forward
and return paths are uncorrelated. Thus, average performance measures
generally can be constructed from products of average measures on the

individual paths.

In addition to the two-way path problem, propagation effects in
SBR systems are more critically dependent on angular deviation than are
propagation effects for SATCOM, where the source (target) location generally

is known. This is particularly true for SARs.

The model developed in Topical Report 1 uses a discrete array of
noninteracting point sources to simulate an arbitrary antenna configuration.
For a dense distribution of radiators (or receivers), the more familiar
aperture distribution functions can be recovered by replacing summations

with integrals.

The actual propagation effects are accommodated by applying the
appropriate channel transfer function to the radar signal. For a narrow-
band signal, the propagation effects are multiplicative. At any instant
in time, the effect is to convolve the gain pattern of the antenna with a
random function. The average distortion of the gain pattern is obtained
by computing the Fourier transform of the aperture distribution multiplied
by the mutual coherence functions [see Eq. (33) in Topical Report 1].

The principal parameter is the size of the aperture compared with the

spatial coherence scale.

The temporal variations of the signal mainly affect the sensitivity

of the system as distinct from its resolving power. 1In effect, the target

iy T <

cross section fades--a problem that has been treated extensively in radar

ey

e




theory.z’3 Similarly, loss of phase coherence limits the effective

coherent integration time.4 Finally, loss of frequency coherence limits

the achievable range resolutions. Such effects are not fundamentally
different from their counterparts in SATCOM systems, and detailed simulations

are ultimately required for performance evaluations.

In the remainder of this report, we consider the performance degrad-
ation of satellite-borne SAR systems. The SAR method achieves high res-
olutions (comparable to practical optical instruments in space) by co-
herently processing the radar returns over periods approaching the time
a target-element remains within the beam. Coherent processing is used
to compensate for the phase drift induced by the satellite motion. Pro-
pagation disturbances cause both phase and amplitude errors that distort

the synthesized beam.

We have divided our treatment of the problem into three parts. In
Section II, we develop a model that includes all the essential elements
of a SAR system; we used the SEASAT-A SAR as a model. The satellite
was operational only for a little more than three months commencing in
July 1978, but it produced a large data base for demonstrating propagation
effects. In Section III, we used the SATCOM model with typical iono-
spheric parameters to determine the likelihood of significant SAR per-

formance degradation due to natural disturbances.

Our analysis shows that only the most intense high-latitude distur-
bances are likely to produce a detectable SAR image degradation. More
severe disturbances would be expected near the geomagnetic equator. In
collaboration with staff members from Research Development Associates
(RDA) who were working with SEASAT data for other reasons, we performed
a search of the SEASAT-B library of optically processed data. One pass
that showed a conspicuous image degradation coincided, fortuitously,

with a set of incoherent-scatter radar measurements. The radar data

showed a prominent F-layer enhancement with the characteristics that have

been consistently associated with enhanced scintillation.

In Section V we discuss the effects of more severe propagation
disturbances and future effort to identify and mitigate the effects of

propagation disturbances.




IT A MODEL FOR EVALUATING PROPAGATION EFFECTS IN SPACE-BASED SAR
SYSTEMS

The principal of SAR processing is simple. A linear array of
discrete elements can be focused by adjusting the phase of the individual
elements so that the returns from a signal emanating from the focal point

have the same phase. Alternatively, the complex signal from a single

element can be recorded as it moves along the axis of the alelr array,
and the appropriate phase adjustments can be made ex post ‘to. The
beamwidth of a fixed antenna element imposes a limitation the maximum

aperture that can be synthesized.

For example, let the aperture width of the antenna element be LE.

The maximum element separation that can contribute to a focus at R is

L = = . (@D]

The spatial resolution of the synthesized array is

By' Eg— = = (2)

Because the SAR antenna is used for both transmission and reception, the

effective aperture is halved; hence, the factor of 2 in Eq. (2).

For the SEASAT-A satellite, a phased array with an effective aperture
of v 12 m was used; thus, the intrinsic resolution is v 6 m. The aperture
is traversed in 2 s. In practice, four 4-km segments are processed sepa-
rately and then averaged to reduce cross section variations caused by the
changing aspect angle. Thus, ~ 25 m is the azimuth resolution usually

achieved for digitally processed SAR images.

High resolution in the cross-track direction is achieved by using

pulse compression. The transmitted signal has the form




g y——

2
I’(L):Ro‘roct(,—t'-)exp[2ni(ft+Kﬁ )]' . (3)
et s SR
For SEASAT-A,
T = 33.9 s
Kr = 0.562 MHz/s
f =11.25 MHz .
o]

Details of the SEASAT-A signal structure and data processing can be
found in References 5 and 6. The corresponding complex signal will be

denoted by p(t).

To mode!l the return signal, we consider the coordinate system shown

in Figure 2, where r(t) is the distance trom the satellite at time t to

y (AZIMUTH)

t —» x {RANGE!

FIGURE 2 LOCAL COORDINATE SYSTEM FOR SAR PROCESSING
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point (x, y) on the ground. Thus,

r(t) = |(Rsin® + x)2 + (y - vt)2 + (Rcose)2
2 2
- . yvt  p +(vt)
Z R + xsin® - Tt TR . (4)
2 2.% . . .
where p = (x~ + y )°. The return signal from a single point target at
p admits the representation
S(t) = Re{p(1)*g(t,t) o(plexplonir(t)/A]} (5)

where 0(;) is the complex scattering coefficient assumed to be frequency
independent over the frequency band of the pulse. Ionospheric effects
are accommodated by convolving p(t) with the time-varying impulse function

g (t,t). Alternatively, we can write
p(t)*g(t,t) =j~f>(f)h(t,fC + f)exp(2rify)df (6)
where h(t, f) is the time-varying transfer function and
g(t,t) =.,;(t, fc + flexp(2rift)df . (7

In the SEASAT-A data reduction, bursts of 13,680 samples over a
300.46-us interval are recorded every interpulse period of T, z 600 us;
thus, 1/At = 45 MHz. The spectral extent of the sampled signal is shown
in Figure 3(a). The data are processed by first performing a 4096-point
real Fast Fourier Transform, which generates 2048 complex frequency samples
spanning f = 0 to fN = 22.5 MHz. To generate the complex signal, a cyclic
shift of the Fourier components is performed as illustrated in Figure 3(b).

The complex signal is then multiplied by p*(nAf). If the time-bandwidth
product is large, the inverse Fourier transform of |p|2 is well approx-

imated by

K Tzsin(nK Tt)
r r

pc(t) = . (8)

K Tt
r

10
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In practice, the radial component of the satellite motion causes a
Doppler shift that manifests itself as an uncertainty in fo’ and a time-
consuming iterative procedure must be used. For our purposes here, how-

ever, this subtlety can be ignored.

We note, however, that over the 300-us data interval, changes in
r(t) are negligible, as are changes in g(t,r) with t. Thus, the pulse
compression operation affects only p(t) in Eq. (5); moreover, At =

(KrT)'l. In range delay units, we can write

sC(J,l) =J(7;C()AR - xsin® - nz)xg(ZTP, jAR -xsin® - nz)

N, Lo
x exp(&nijr) o(pldp (9)

where TP is the interpulse period; then,

VTPR p2 + (val)z
n = -y R + 12 R ' (10)

and we have integrated over all scatterers.

The fact that n_  appears in the argument of pc(x) greatly complicates

2
the azimuth compression operation. The range cell for which the azimuth

compensation n, is to be applied changes with 2. To make this explicit,

2
we define

j(2) = [(xsin® -ng)/ARJ[ . (11)

where [ . ], denotes the nearest integer value. The processed signal

L
for a target area centered at (x', y') is

Np-1

1
N5 sc[j'(ﬂ), 2]exp(—&nin'ﬂlk) . (12)
2=

(e}

Because of the phase fluctuations of the target area, the quantity of

> I

interest is |8(p")

, where the overbar denotes an average.




- N

One usually assumes that the target-scattering function is a
random process that is uncorrelated from one resolution all to the next.

We define the ambiguity function as

Np-1
. 1 2: .
J = — I3 ' - i -
Alp, p") Np P, g(ZTP, j'(2)AR - xsin® nﬂ)
2-0

x exp{lnti(nlZ - n'ﬂ)/k} . (13)

Using the assumption of uncorrelated resolution cells, it follows that
e 2 - - 2 - 2 -
<lae|™> =/f<|A(p, p')|“><|o(p)| “>dp . (14)

The ionospheric disturbance potentially affects both the range, x, and
azimuth, y, coordinates; however, for naturally occurring ionospheric
disturbances, the range distortion is negligible, as we shall show in the
next section. It should also be noted that insofar as evaluating the

effects of propagation disturbances are concerned, there is no loss of

generality in assuming that the compressed pulse, P.,» was actually

transmitted.




IITI IONOSPHERIC EFFECTS

The mathematics of wave propagation in randomly irregular media

)

have been treated extensively in published papers, as have its
applications to systems effects.9 Here we shall only review these re-
sults to justify our choice parameters used in evaluating the effects of
naturally occurring ionospheric disturbances. Scintillation is essentially

an interference phenomenon as is illustrated schematically in Figure 4.

DEVIATED
RAY DIRECT RAY

STRUCTURED
REGION

————— L uix,z}

FIGURE 4 SCHEMATIC REPRESENTATION OF SCINTILLATION DEVELOPMENT

The spatial wavenumber spectrum of the complex field u (5,2)
characterizes the angular distribution of the scattered waves. Formally,

the wavenumber spectrum is the Fourier transform of the mutual coherence

14




function which has the particularly simple mathematical form

<ulp,z)us(p',z)> = expl-%D(ap)} , (15)

where D(Ap) is the phase structure function. The in-situ irregularities
are characterized by a three-dimensional power spectral density function

of the form

®(q) = qu-(p+1) , (16)
where
I‘(Pf_l_)
C = 8n3/2q p-2 —-—2————-<AN2> (17
s o p-2 e
(%7)

relates the turbulence parameter CS to the electron density variance

via an outer scale wavenumber - The corresponding phase variance

o)
&

where re is the classical electron radius and G is a geometric factor

for a path of length Qp is

<642> = 2Vnr ZAZ q'l[ﬂ G<AN2>] . (18)
e o P o

that accounts for irregularity anisotropy. The square brackets denote

an average value over the propagation path.

In terms of these model parameters, it can be shown that

D(y) = rzxzﬂ C C(p)|ylmaX(2' p-1) 2<p<hy (19
e p s P>

where

. 1 2

Cip) = VI [0.25 p~ -2.25 p + 5.5] . (20)
We define 2) so that

hig ) = 2 . (21)

o




The corresponding temporal coherence time is given as

20
to = — . (22)
veff

If we let p = 3, Eq. (22) is equivalent to Eq. (2) in Wittwer.9 In

that case, 20 « f,

The frequency coherence can be estimated by noting that the average

angular deviation is proportional to (ﬂok)-l, which we can_equate with
58
693 in Figure 4. The path difference for small 665 is 2-73. The corres-

ponding delay spread is given as

2692
S

At = 2¢c =

. (23)

Z
ck222
o

The corresponding frequency spread fo is defined as

f == = . (24)

9
Again, it we let p = 3, Eq. (24) is equivalent to Eq. (3) in Wittwer
for which fo « f3. In any case, the coherence bandwidth changes much

more rapidly with frequency than does the spatial coherence, QO.

The general form of frequency correlation function does not admit
simple mathematical representation. Wittwer9 has derived a representation
valid for p = 3. An integral representation based on the phase screen
model was used to interpret data from the Wideband satellite.lo The
main differences between these models lie in the approximations that

have been used and the parameter ranges that have been emphasized.

The SATCOM model for nuclear effects assumes a q‘3 power taw to an
outer scale wavenumber corresponding to ~ 10 km. For the ionosphere,

1,12

a two-component power law seems most representative. For inter-
mediate-scale structures between 10 km and 500 m, a shallowly sloped
power law with 2 < p < 3 applies. For sizes smaller than 500 m, a much

steeper slope, 3 < p < 5, applies.

16




A detailed analysis of the scintillation effects of a two-component
power law has been performed.13 The resultant scintillation structure
- If re is smaller than the
scale of the break frequency, the scintillation structure is essentially

depends critically on the Fresnel radius r

the same as a single component power law with a steep slope (p > 3); re
is greater than the scale of the break frequency but less than the outer
scale, the break acts much like an outer scale cutoff. Finally, as the
Fresnel radius increases toward the outer scale, the low-frequency por-
tion of the spectrum, where most of the spectral intensity lies, dominates
the signal moments; however, the high-frequency components of the scin-

tillation intensity spectrum follows the steeply sloped portion of the

integrated phase spectrum.

At L-band and higher frequencies, typical Fresnel radii are smaller
than the scale of the break frequency qy - Thus, the scintillation
structure has the characteristics of a steeply sloped power law environ-

ment. To extend Eq. (16) beyond q,,» we can use

_p2
qu a, < a <q, - (25)
o(q) = >
(p,-p,) 'h
l qub h "2° q q > qy
It follows that
¢’ = ¢ q PnPy) (26)
s s 'b

is the effective turbulent strength for the transition scale structure.

In Figure 5 we have plotted 20 and fo with the Sa scintillation
index using both the intermediate-scale (pe) and the transitional scale
(ph) power law components. A break frequency of 500 m was used, which
exceeds the median value of 750 m reported by Basu et al.lz Thus, the
curves in Figure 5 should bracket the actual coherence scales. In
general, the effect of the steeply sloped transition scale is to increase

both the coherence bandwidth and the spatial coherence. 1In all cases,

however, the coherence bandwidth remains well beyond the frequency band

17




12
AN el/m3

1010 1011 1012 1013 1014 1015 1016

128 I T I T T T I

1.00 lp - 100 km
' — z = 400 km

f = 1275 MH:z

0.75

0.50 |~

0.25 |~

0.00
100

80 —

MH,

240 p—

20 —

ay 500 m _4

16 18 20 22 24 26 28 30

LOGyq Cg
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of the chirp pulse. Under such conditions, the ionosphere causes only
a pulse-to-pulse variation, and P 8 in Eq. (13) can be replaced by the

simple product p (t)h(&T_,f ), which follows from Eq. (7).
c p’c

The spatial coherence, however, can be reduced below the limits of
space-based SAR apertures. To evaluate the effect of propagatior dis-
turbances in such cases, we have simulated the ambiguity function as
defined by Eq. (13), using the parameters listed in Table 1. For simpli-
city, we have ignored the range migration effect so that the propagation-
induced distortion is confined entirely to the azimuth coordinate.
Single-phase screen simulations based on the two-component power law

were used to generate realizations of h(ETR, fC).

Table 1

SEASAT-A PARAMETERS

Symbol Name Value
Frequency 1275 MHz
Tp Interpulse period (1464)~1 o
v Velocity 8.78 km/s
Np Number of pulses 2667
L Synthesized aperture size 16 km
R Slant range 830 km
0 Beam offset 20
Ax Range step v 8 m (not used
in simulation)
Ay Azimuth step va = 6m

Representative

shown in Figures 6 through 8.

results for progressively increasing C  values are
S

The effect of the propagation disturbances

is to lower the peak of the main lobe and raise the sidelobe level.
Broadening of the main lobe, which one would associate with loss of
resolution, is not significant. Thus the propagation effects act to

reduce contrast rather than to defocus the SAR image. This is an important

distinction for processing algorithms and mitigation techniques.

19
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, Other analyses of propagation disturbances in SARs have been made,
these analyses confined the errors entirely to the phase of the signal.
A least-squares estimate of the linear and quadratic phase terms was
obtained, together with rms value of the residual called the integrated
sidelobe ratio. Consistent with our own results, the integrated side-~

iobe ratio was found to be the most serious concern tor SAR image

degradation.




v SEASAT-A DATA

A large number of high-latitude SAR images were recorded by the
SEASAT-A satellite when it was operational in 1978. A systematic search
of the SEASAT library of passes was performed to identify pass segments
where propagation disturbances were likely. In the initial sorting, we
accepted all pass segments that fell within the auroral zone or polar
cap within four hours of local midnight. The auroral-zone passes were
then further divided into nighttime Alaska sector and nighttime non-

Alaska sector passes.

The SEASAT passes that satisfy these criteria are summarized in
Table 2. These passes collected data during the most likely periods for
auroral activity. We made no attempt to further sort the data on the
basis of magnetic activity or other indicators of auroral activity;
rather, we decided to make a systematic visual survey of the optically
processed SEASAT images to identify any degradation that could be

attributed to auroral propagation disturbances.

Because several factors that are difficult to control affect the
quality of the optical images, we sought distinct changes within a single
image that could not be immediately associated with actual changes in the
terrain and other factors. We paid careful attention to operator logs

and comments by personnel! familiar with the detailed processing techniques.

Dr. Victor Gonzalez of SRI and Dr. Dean Liskow of RAD paid two visits
to the Jet Propulsion Laboratory (JPL). About 60 of the optically pro-
cessed SEASAT passes from the candidate subset were examined. The
optically reduced data are presented in the form of four strips of
(negative and positive prints) film, each several feet long. The quality

of the data is good most of the time, and the images arc clear.

The resolution in the data studied was of the order of 10 to 20 km
per inch. Thus, the resolution did not allow examination of small de-
tails of less than about 100 m. Rivers, mountain ranges, and coast

lines provided good edges for comparison during different passes because
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Table 2

CONDIDATE PASSES FOR AURORAL PROPAGATION DISTURBANCES

(a) (h) (c)
Alaska Auroral Zone Polar Cap Non-Alaska Auroral Zone
(primary candidate) (supplementary passes) (Last Resort)
[D = Start Stop Start Stop Start Stop
(uT) (uT) In # (uT) (uT) ID # (UT) (uT)
001 1218 1224 086 016 1130 1136
002 1225 1231 092 025 1000 1006
004 1332 1338 097 032 1037 1043
013 1200 1206 104 038 1432 1438
028 1246 1252 119 044 1014 1021
037 1253 1259 124 045 1152 1157
040 1401 1407 128 048 0944 0951
046 1331 1337 132 089 2125 2131
. 052 1411 1415 137 107 2132 2137
099 1329 1333 142 121 2139 2145
106 1437 1443 145 129 1343 1349
146 1457 1503 149 143 1351 1356
\ 151 1428 1434 161 153 2231 2237
163 1435 1441 169 165 2237 2243
174 1439 1445 173 176 2134 2140
) 88 1654 1700 181 218 2340 2342
202 1520 1524 195 233 2353 2354
303 1026 1031 199 248 0005 0007
330 1039 10437 276 264 0017 0020
355 1052 1055 280 . " 274 0030 0033
419 1336 1346 283 z v 308 2355 2357
427 1129 1134 285 e e 319 0108 0111
44, 1349 1359 288 = = 344 0008 0011
445 1705 1713 296 z 2 344 0121 0124
{ 450 1142 1147 304 . e 352 0230 0232
465 1502 1411 315 = = 361 0021 0023
468 1717 1726 322 a 5 375 1626 1632
474 1155 1202 340 z z 377 0103 0107
349 398 1639 1645
. 357 400 0116 0120
"Mer idian 366 422 1652 1701
0031 0037
0044 0045
0124 0130




the data were frequently taken over the same area. In some instances,
however, the configuration of the ice in rivers changed enough to make

the recognition of details difficult.

Examination of the pictures showed that they contained times (or
areas) in which the data were deficient to various degrees, and sometimes
were missing completely. Discussion with JPL staff familiar with the
acquisition of data disclosed that several reasons could account for data
degradation. For example, dynamic behavior of the satellite could be
one reason. When the data are transmitted to the ground-monitoring
stations, the ground receivers have antennas with different gains and
receivers with different characteristics that add '"noise' to the analog
data received. The details of the optical processor also have adjustments

(such as focusing) that also may occasionally add noise to the data.

Nonetheless, we isolated a pass that did contain the expected

characteristics of a propagation disturbance:

ID No. 330

Revolution No. 1236

Date 21 Sept 1979

Ut 1041:50 to 1042:10.

We also located an unperturbed pass that covered the same area:

ID No. 355

Revolution No. 1279

Date 24 Sept 1979

uT 1054:33 to 1054:33.

The characteristics of the degradation are as follows:

. The degraded area is localized.
. The degraded area does not include all ranges.
. The boundaries of the degraded area are not perpendicular

to the direction of satellite motion.
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Figure 9 shows the image swath of the two SEASAT-A passes superimposed
on a map of Alaska and northern Canada; the shaded area is the region of
interest. Figure 10 shows a topographical map of the image area, which

lies northeast of Fort Yukon, Alaska.

Figure 11 shows the digitally processed normal SAR image. The
Porcupine and the Coleen Rivers, as well as the nearby lakes, correlate
very well with the topographical map. The striking map-like character
of SAR radar images is well known. Figure 12 is a radar image of the
same area but recorded several days earlier. This image shows a broad
wedge-shaped region where there is a distinct loss of contrast but no
perceptible loss ot resolution. This type of degradation is consistent

with the analysis presented above in Section TII.

Through an extremely fortuitous set of circumstances, the Chatanika
radar, which is located near Fairbanks, Alaska. was operating during
the period the SAR image shown in Figure 12 was recorded. The radar was
performing a routine 24-hour run in a mode that included elevation scans
as well as multiposition measurements for drifts. From the elevation
scan data, it is possible to map the distribution of ionization in the
magnetic meridian. Such elevation scans have been used extensively to
study unstable F-region "blobs'"; indeed, they provided the first demon-

[
stration of the association of F-region structure and scintillation.

Figure 13 shows the track of the subsatellite point and a tracv dis-~
placed 20° from the orbit plane as viewed from the satellite. The points
on the subsatellite track are 20 s apart. The numbers on the 20° track
are the geometrical scintillation enhancement factors for 10:10:1 shects.
[t is interesting to note that this pass is not favorably oriented for a

strong geometrical enhancement in the image region.

The dark bar locates the meridian plane of the radar scan. The
areca of the SAR image is outlined, and the region of the degradation is
shaded. The plane of the meridian scan intercepts the image region;
however, the F-region penetration point of the structure region lies to
the east of the ground image area. [t is significant that the degradation

was observed as an east-west protrusion into the image region.
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FIGURE 11

DIGITALLY PROCESSED IMAGE FOR REVOLUTION 2379
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FIGURE 12 DIGITALLY PROCESSED IMAGE FOR REVOLUTION 1236
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SEASAT 1279

1D 330
SUBSATELLITE
TRACK
o
CHATANIKA 20 TRACK -20's
. RADAR MERIDIAN 28 .
3 ™
®
[ ]
o
65
;
°
.
55°
o
i -160° -120
-150° . -130°

-140°
FIGURE 13 MAP GRID SHOWING LOCATIONS Of DEGRADED SAR IMAGE AND

CHATANIKA MERIDIAN

’ The dark bar locates the meridian plane of the radar scan. The

area of the SAR image is outlined, and the region of the degradation is

s i

vl o ol et ool

shaded. The plane of the meridian scan intercepts the image region;

however, the F-region penetration point of the structure region lies to

the east of the ground image arca. 1Tt is significant that the degradation

was observed as an east-west protrusion into the image region.
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The satellite track identifier closest to the image region occurred
F at 10:30. Two of the 12-minute elevation scans bracketed this period.
The reconstructed meridional density contour maps are shown in Figures

14 and 15.

A highly structured enhanced F-layer is a prominent feature in both
maps. From recent studies of these F-region structures, we know that
they are highly unstable; moreover, although the large-scale structure
maps along the L-shells, there is a considerable amount of small-scale
east-west structure as predicted by Keskinen and Ossakow.17 Thus, we
cannot correlate the individual blob structures with the image degradation.
However, we know that scintillation-producing irregularities, of the type
we have been studying intensively for several years now, were almost

certainly present along the propagation path to the degraded image.

We have emphasized the data from SEASAT-A revolutions 1236 and 1279
because of the incoherent-scatter radar data that allowed us to identify
the likely source region of the disturbance. Also, in our initial search
of the candidate passes listed in Table 2, we were looking for image
degradation of an unknown character. The tendency in the initial search
was to look for loss of resolution rather than loss of contrast. The
optically processed images that were used for the initial search, more-
over, were processed in four strips, which often showed intensity gradients

across the image.

Thus, it is reasonable to assume that a propagation-induced contrast
reduction in high-latitude SAR images is present in many more of the
candidate passes but was overlooked in the initial search. Indeed, Dr.
Bryan Honeycutt of JPL had noted a contrast reduction in a SEASAT-A image
of Banks Island during a period of high-geomagnetic activity. He attri-

buted the effect to an auroral-activity-induced propagation disturbance.
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v CONCLUSTONS AND RECOMMENDATIONS

[n this report we have analyzed the likely effects of propagation
disturbances on satellite-borne SAR imagery. The work is an application
ot the general space-based radar model developed during the first phase
of this contract. The principal effect of propagation disturbances is
a degradation of the azimuthal component of the SAR ambiguity function.
In a very severely disturbed environment, coherence bandwidth loss could
also degrade the range resolution, although at L-band and higher frequen-

cies naturally occurring disturbances will not cause such effects.

Simulations of the azimuthal degradation show that an eclevated
sidelobe level is the dominant effect. In an actual SAR image, the ele-
vated sidelobes evidently reduce contrast. We showed a very good example
of this effect in an image obtained from a SEASAT-A pass over Alaska with

correlative incoherent-scatter radar data to identity the disturbance.

More severe disturbances, of the type commonly observed near the
geomagnetic equator, would likely cause a much more severe contrast re-
duction, although the detailed characteristics of such disturbances should

be investigated further.

A potentially important factor in the SFEASAT-A image we analyzed
is that the propagation disturbance occurred in a geometry for which
the enhancement of the disturbance and to the known sheet-like anisotropy
ot the irregularities was not significant. Thus, for a more nearly
meriodinal alignment of the satellite, the same structure could producr
a more severe degradation. More claborate simulations than those we
performed in Section TII should be initiated to identify the effects of

the geometric dependence of propagation disturbances.

Such simulations also would provide a data source for testing more
elaborate mitigation schemes. As shown in Section [T, the simulations
need not reproduce in complete detail the SAR data recording and pro-
cessing procedures. For example, the pulse compression operation can
be eliminated by assuming that the compressed pulse was actually trans-
mitted. There is no loss of generality insofar as propagation effects are

concerned.
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Our preliminary analysis suggests that the degradation depends on
the spatial coherence scale 20 which varies essentially linearly with
frequency and that naturally occurring irregularities in the auroral zone
and, particularly, near the geomagnetic equator can degrade SAR images.
On the other hand, a thorough search of the SEASAT-A library of high

latitude SAR data did not reveal many examples of the expected effects.

One explanation is that the disturbed regions are patchy such that
the average occurrence of scintillation based on long-ter~ morphological
data exaggerates the likelihood of intense irregularities occurring at a
single point. Alternatively, the focusing process used in the SAR image
reconstruction may compensate for a large amount of the ionosphere-induced
phase distortion.

To investigate this possibility, we propose mere detailed simulations
that can accommodate two-dimensional images. This will also allow us to
evaluate the various measures of image degradation that are being used
and determine the improvements that can be achieved by increasing fre-

quencies and/or using image enhancement techniques.
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